Volltext anzeigen | |
5 8 Flächensätze am rechtwinkligen Dreieck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8.1 Die Flächensätze des Euklid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.2 Der Satz des Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.3 Berechnungen im Koordinatensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.4 Anwendung der Flächensätze im Raum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.5 Vermischte Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.6 Themenseite: Rund um Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.7 Das kann ich! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.8 Auf einen Blick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Kreuz und quer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9 Berechnungen am Kreis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 9.1 Die Kreiszahl π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.2 Kreisbogen und Kreissektor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.3 Kreisring und Kreissegment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 9.4 Vermischte Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.5 Themenseite: Bestimmung von π mit der Monte-Carlo-Methode . . . . . . . . . . . 226 9.6 Das kann ich! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9.7 Auf einen Blick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Kreuz und quer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 10 Raumgeometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 10.1 Oberfl äche von Prisma und Zylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 10.2 Oberfl äche von Pyramide und Kegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 10.3 Volumen von Prisma und Zylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 10.4 Volumen der Pyramide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.5 Volumen des Kegels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.6 Volumen der Kugel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.7 Oberfl äche der Kugel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 10.8 Funktionale Abhängigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 10.9 Vermischte Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 10.10 Themenseite: Viva Las Vegas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 10.11 Das kann ich! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10.12 Auf einen Blick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Kreuz und quer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Stichwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Bildnachweis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Flächensätze am rechtwinkligen Dreieck8 Untersucht rechtwinklige Dreiecke genauer. Nehmt eine gut 3 m lange Paketschnur und knotet sie an den Enden zusammen. Zusätzlich braucht ihr noch ein Maßband. Nehmt den Schnurring und spannt ihn am Boden eures Klassenzimmers in einer Ecke des Raumes so auf, dass ein rechtwinkliges Dreieck entsteht (die beiden kürzeren Seiten liegen dann an den Wänden an). Messt die Längen der Dreiecksseiten. Quadriert nun die Maßzahlen der Längen der beiden kürzeren Seiten und addiert diese Werte. Vergleicht diese Summe mit dem Quadrat der Maßzahl der Länge der langen Seite. Was stellt ihr fest? Verändert das Dreieck (die beiden kurzen Seiten sollen dabei immer an den Wänden anliegen) und rechnet erneut. Was stellt ihr fest? Am Ende dieses Kapitels hast du gelernt, … Seitenlängen und Höhen in rechtwinkligen Dreiecken zu berechnen. Streckenlängen im Koordinatensystem zu bestimmen. die Flächensätze für Berechnungen in verschiedenen Anwendungen zu nutzen. Berechnungen am Kreis9 Beim Kugelstoßen wird ausgehend vom Mittelpunkt des Stoßkreises ein Feld unter einem Winkel von etwa 35° angetragen. Das Feld wird dabei von zwei Strecken begrenzt und einem Kreisbogen. Zeichne ein solches Feld im Maßstab 1 : 100 bis zu einer maximalen Wurfweite von 10 m in dein Heft. Alle 2 m wird die Weite auf dem Feld markiert. Trage diese Weitenlinien in deine Zeichnung ein. Schätze die Länge aller Linien möglichst genau ab, die man zeichnen muss, um das Feld aus dem Heft in Realität zu zeichnen. Wie groß ist der Flächeninhalt des Feldes in der Realität? Am Ende dieses Kapitels hast du gelernt, … Zusammenhänge zwischen den Größen am Kreis mathematisch zu beschreiben. Größen am Kreis und an Kreisteilen zu berechnen. die Berechnungen an Kreisen und Kreisteilen für Anwendungen zu nutzen. Raumgeometrie10 Welche Form hat dieses Aquarium? Schätze, wie viel Wasser sich im Aquarium befi ndet. Wie kann man die Füllmenge für das Aquarium ausrechnen? Wie viel Quadratmeter Glas müssen bei einer Reinigung geputzt werden? Unterscheidet sich die Größe der Glasfl äche innen und außen? Am Ende dieses Kapitels hast du gelernt, … wie man die Oberfl äche von Prismen, Zylindern, Kegeln, Pyramiden und Kugeln bestimmt. wie man das Volumen dieser Körper bestimmt. wie man die Oberfl äche und das Volumen von zusammengesetzten Körpern bestimmt. Nu r z u Pr üf zw ec ke n Ei ge nt um d es C .C Bu ch ne r V er la gs | |
![]() « | ![]() » |
» Zur Flash-Version des Livebooks |